Treatment planning of intracranial lesions with VHEE: comparing conventional and FLASH irradiation potential with state-of-the-art photon and proton radiotherapy

Author:

Muscato A.,Arsini L.,Battistoni G.,Campana L.,Carlotti D.,De Felice F.,De Gregorio A.,De Simoni M.,Di Felice C.,Dong Y.,Franciosini G.,Marafini M.,Mattei I.,Mirabelli R.,Muraro S.,Pacilio M.,Palumbo L.,Patera V.,Schiavi A.,Sciubba A.,Schwarz M.,Sorbino S.,Tombolini V.,Toppi M.,Traini G.,Trigilio A.,Sarti A.

Abstract

The treatment of deep-seated tumours with electrons of very high energies (VHEE, 70–150 MeV) has already been explored in the past, suggesting that a dosimetric coverage comparable with state-of-the-art proton (PT) or photon radiotherapy (RT) could be achieved with a large (> 10) number of fields and high electron energy. The technical and economical challenges posed by the deployment of such beams in treatment centres, together with the expected small therapeutic gain, prevented the development of such technique. This scenario could radically change in the light of recent developments that occurred in the compact, high-gradient, electron acceleration technology and, additionally, of the experimental evidence of the sparing of organs at risk achieved in ultra-high dose rate irradiation, also referred to as FLASH. Electrons with the energy required to treat intracranial lesions could be provided, at dose rates compatible with what is needed to trigger the FLASH effect, by accelerators that are a few metres long, and the organ sparing could be exploited to significantly simplify the irradiation geometry, decreasing the number of fields needed to treat a patient. In this paper, the case of two patients affected by a chordoma and a meningioma, respectively, treated with protons in Trento (IT) is presented. The proton plans have been compared with VHEE plans and X-ray intensity-modulated radiotherapy (IMRT) plans. The VHEE plans were first evaluated in terms of physical dose distribution and then assuming that the FLASH regimen can be achieved. VHEE beams demonstrated their potential in obtaining plans that have comparable tumour coverage and organs at risk sparing when benchmarked against current state-of-the-art IMRT and PT. These results were obtained with a number of explored fields that was in the range between 3 and 7, consistent with what is routinely performed in IMRT and PT conventional irradiations. The FLASH regimen, in all cases, showed its potential in reducing damage to the organs placed nearby the target volume, allowing, particularly in the chordoma case where the irradiation geometry is more challenging, a better tumour coverage with respect to the conventional treatments.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3