Author:
Allier Cédric,Hervé Lionel,Paviolo Chiara,Mandula Ondrej,Cioni Olivier,Pierré William,Andriani Francesca,Padmanabhan Kiran,Morales Sophie
Abstract
We present a novel deep learning-based quantification pipeline for the analysis of cell culture images acquired by lens-free microscopy. The image reconstruction part of the pipeline features a convolutional neural network performing phase unwrapping and accelerating the inverse problem optimization. It allows phase retrieval at the 4K level (3,840 × 2,748 pixels) in 3 s. The analysis part of the pipeline features a suite of convolutional neural networks estimating different cell metrics from the reconstructed image, that is, cell surface area, cell dry mass, cell length, and cell thickness. The networks have been trained to predict quantitative representation of the cell measurements that can be next translated into measurement lists with a local maxima algorithm. In this article, we discuss the performance and limitations of this novel deep learning-based quantification pipeline in comparison with a standard image processing solution. The main advantage brought by this method is the fast processing time, that is, the analysis rate of ∼25.000 cells measurements per second. Although our proof of principle has been established with lens-free microscopy, the approach of using quantitative cell representation in a deep learning framework can be similarly applied to other microscopy techniques.
Funder
Horizon 2020 Framework Programme
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献