Toward a Physics of Interdependence for Autonomous Human-Machine Systems: The Case of the Uber Fatal Accident, 2018

Author:

Lawless William

Abstract

Computational autonomy has begun to receive significant attention, but neither the theory nor the physics is sufficiently able to design and operate an autonomous human-machine team or system (HMS). In this physics-in-progress, we review the shift from laboratory studies, which have been unable to advance the science of autonomy, to a theory of autonomy in open and uncertain environments based on autonomous human systems along with supporting evidence in the field. We attribute the need for this shift to the social sciences being primarily focused on a science of individual agents, whether for humans or machines, a focus that has been unable to generalize to new situations, new applications, and new theory. Specifically, the failure of traditional systems predicated on the individual to observe, replicate, or model what it means to even be the social is at the very heart of the impediment to be conquered and overcome as a prelude to the mathematical physics we explore. As part of this review, we present case studies but with a focus on how an autonomous human system investigated the first self-driving car fatality; how a human-machine team failed to prevent that fatality; and how an autonomous human-machine system might approach the same problem in the future. To advance the science, we reject the aggregation of independence among teammates as a viable scientific approach for teams, and instead explore what we know about a physics of interdependence for an HMS. We discuss our review, the theory of interdependence, and we close with generalizations and future plans.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference114 articles.

1. Human-AI Teaming: State-Of-The-Art and Research Needs;Endsley,2021

2. Does New Physics Lurk inside Living Matter?;Davies;Phys Today,2021

3. The Interdependence of Autonomous Human-Machine Teams: The Entropy of Teams, but Not Individuals, Advances Science;Lawless;Entropy,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3