Multiclass classification using quantum convolutional neural networks with hybrid quantum-classical learning

Author:

Bokhan Denis,Mastiukova Alena S.,Boev Aleksey S.,Trubnikov Dmitrii N.,Fedorov Aleksey K.

Abstract

Multiclass classification is of great interest for various applications, for example, it is a common task in computer vision, where one needs to categorize an image into three or more classes. Here we propose a quantum machine learning approach based on quantum convolutional neural networks for solving the multiclass classification problem. The corresponding learning procedure is implemented via TensorFlowQuantum as a hybrid quantum-classical (variational) model, where quantum output results are fed to the softmax activation function with the subsequent minimization of the cross entropy loss via optimizing the parameters of the quantum circuit. Our conceptional improvements here include a new model for a quantum perceptron and an optimized structure of the quantum circuit. We use the proposed approach to solve a 4-class classification problem for the case of the MNIST dataset using eight qubits for data encoding and four ancilla qubits; previous results have been obtained for 3-class classification problems. Our results show that the accuracy of our solution is similar to classical convolutional neural networks with comparable numbers of trainable parameters. We expect that our findings will provide a new step toward the use of quantum neural networks for solving relevant problems in the NISQ era and beyond.

Funder

Russian Science Support Foundation

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference46 articles.

1. Quantum computing at the quantum advantage threshold: A down-to-business review;Fedorov,2022

2. Quantum computers;Ladd;Nature,2010

3. Quantum computing;Brassard;Proc Natl Acad Sci U S A,1998

4. Universal quantum simulators;Lloyd;Science,1996

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scalable parameterized quantum circuits classifier;Scientific Reports;2024-07-10

2. Multi-Class Quantum Convolutional Neural Networks;Proceedings of the 2024 Workshop on Quantum Search and Information Retrieval;2024-06-03

3. Simplifying Quantum Multi-class Classification for the NISQ Era Using Error-Code Output Correction;2024 IEEE International Conference on Electro Information Technology (eIT);2024-05-30

4. Quantum convolutional neural networks for multiclass image classification;Quantum Information Processing;2024-05-13

5. Breast Cancer Detection using Explainable AI and Quantum Neural Network;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3