The model for non-Abelian field topology for the multilayer fractional quantum anomalous Hall device

Author:

Shen Jie,Dong Wen Qi,Shi Xuewei,Wang Jing,Wang Yang,Liu Han Min

Abstract

From the recent empirical discovery of the quantum anomalous Hall effect (QAHE), the interaction of the particle with spin–orbit coupling (SOC) plays an essential role in the cause of the QAHE, which includes three terms: external, internal, and chiral symmetric terms. Then, the non-Abelian quantum field theory was adopted to analyze and prove the conjecture on the causes that can lead to the fractional quantum Hall effect (FQHE). The spontaneously topological chiral symmetry breaking is the main contribution to the FQHE, which also includes two terms: the hopping of sublattice and Coulomb energy by the interaction of many-body particles. More generally, this exciton possesses an intermediate characteristic between the Wannier regimes and displays a peculiar two-dimensional wavefunction in the three-dimensional FQHE states. Finally, a bilayer three-dimensional model is proposed to implement the FQHE on the lattice by incorporating ferromagnetic dopants into three-dimensional topological insulative thin films. This study theoretically predicts the FQHE on the basis of other reports that have experimentally verified the rationality of the proposed model in magnetic topological insulators.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3