Effects of Branched Fins on Alumina and N-Octadecane Melting Performance Inside Energy Storage System

Author:

Weera Wajaree,Maneengam Apichit,Saeed Abdulkafi Mohammed,Aissa Abderrahmane,Guedri Kamel,Younis Obai,Marzouki Riadh,Asogwa Kanayo K.

Abstract

The importance of Phase change material (PCM) energy storage systems is no longer new in the industry. However, the influence of using branched fins inside the energy storage system on the melting process of alumina nanoparticles and n-octadecane has not been reported in the literature. Consequently, the outcome of a study on the numerical simulation for optimizing the melting performance of a PCM in various tubes, including those with branching fins is presented in this report. Four examples were assessed in relation to a suspension of alumina nanoparticles and n-octadecane paraffin that contains heated fins. A numerical technique based on the Galerkin finite element method (GFEM) was used to solve the dimensionless governing system. The average liquid percentage over the flow zone in question was computed. The primary results indicated that altering the number of heated fins might affect the flow structures, the system’s irreversibility, and the melting process. Case four, with eight heated fins, likewise produces the greatest average liquid fraction values and completes the melting process in 850s. Additionally, when 6% nano-enhanced PCM was used instead of pure PCM, the melting process is accelerated by 28.57 percent.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3