Interference fringe suppression in tunable diode laser absorption spectroscopy based on CEEMDAN-WTD

Author:

Wang Shoulin,Gong Weihua,Wang Zhaowei,Wei Yubin,Li Yanfang,Zhang Tingting,Zhang Qinduan,Zhang Lin,Song Fugang,Zhang Wei,Liu Tongyu

Abstract

Owing to interference fringes in the multireflective gas cell, the detection sensitivity of a system in tunable diode laser absorption spectroscopy (TDLAS) will decrease significantly. In this work, a combined scheme of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and wavelet threshold denoising (WTD) is proposed. Theoretical simulations were performed to validate the effects of the proposed algorithm, which was also verified via a CO2 detection experiment. After CEEMDAN-WTD processing, the noisy intrinsic mode function (IMF), pure IMF, and residual components of the detection signal were identified and reconstructed successfully. Based on analysis of the simulations, CEEMDAN-WTD algorithm improved the signal-to-noise ratio by 1.87 times and decreased the root mean-squared error by 37.6% than the moving average algorithm. For the CO2 detection system, R2 = 0.999 was determined by the calibration experiment. Additionally, based on Allan variance analysis and a long-time experiment, the limit of detection was estimated to be 3.08 ppm for an average time of 148 s and measurement accuracy of 0.65%, respectively. The obtained results sufficiently validate that the CEEMDAN-WTD algorithm can effectively suppress interference fringe noise in TDLAS.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3