Graph Embedding for Scholar Recommendation in Academic Social Networks

Author:

Yuan Chengzhe,He Yi,Lin Ronghua,Tang Yong

Abstract

The academic social networks (ASNs) play an important role in promoting scientific collaboration and innovation in academic society. Accompanying the tremendous growth of scholarly big data, finding suitable scholars on ASNs for collaboration has become more difficult. Different from friend recommendation in conventional social networks, scholar recommendation in ASNs usually involves different academic entities (e.g., scholars, scientific publications, and status updates) and various relationships (e.g., collaboration relationship between team members, citations, and co-authorships), which forms a complex heterogeneous academic network. Our goal is to recommend potential similar scholars for users in ASNs. In this article, we propose to design a graph embedding-based scholar recommendation system by leveraging academic auxiliary information. First, we construct enhanced ASNs by integrating two types of academic features extracted from scholars’ academic information with original network topology. Then, the refined feature representations of the scholars are obtained by a graph embedding framework, which helps the system measure the similarity between scholars based on their representation vectors. Finally, the system generates potential similar scholars for users in ASNs for the final recommendation. We evaluate the effectiveness of our model on five real-world datasets: SCHOLAT, Zhihu, APS, Yelp and Gowalla. The experimental results demonstrate that our model is effective and achieves promising improvements than the other competitive baselines.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knowledge Graph-based Embedding for Connecting Scholars in Academic Social Networks;2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA);2023-10-09

2. Research Collaborator Recommendation System based on citations and Influential citations;2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA);2023-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3