Spatiotemporal Complexity Mediated by Higher-Order Peregrine-Like Extreme Events

Author:

Coulibaly Saliya,Tiofack Camus G. L.,Clerc Marcel G.

Abstract

The Peregrine soliton is the famous coherent solution of the non-linear Schrödinger equation, which presents many of the characteristics of rogue waves. Usually studied in conservative systems, when dissipative effects of injection and loss of energy are included, these intrigued waves can disappear. If they are preserved, their role in the dynamics is unknown. Here, we consider this solution in the framework of dissipative systems. Using the paradigmatic model of the driven and damped non-linear Schrödinger equation, the profile of a stationary Peregrine-type solution has been found. Hence, the Peregrine soliton waves are persistent in systems outside of the equilibrium. In the weak dissipative limit, analytical description has a good agreement with the numerical simulations. The stability has been studied numerically. The large bursts that emerge from the instability are analyzed by means of the local largest Lyapunov exponent. The observed spatiotemporal complexity is ruled by the unstable second-order Peregrine-type soliton.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3