Author:
Ghosh Sudeep Kumar,Li Bin,Xu Chunqiang,Hillier Adrian D.,Biswas Pabitra K.,Xu Xiaofeng,Shiroka Toni
Abstract
The silicide superconductors (Ta, Nb, Zr)OsSi are among the best candidate materials for investigating the interplay of topological order and superconductivity. Here, we investigate in detail the normal-state topological properties of (Ta, Nb, Zr)OsSi, focusing on ZrOsSi, by employing a combination of 29Si nuclear magnetic resonance (NMR) measurements and first-principles band-structure calculations. We show that, while (Ta, Nb)OsSi behave as almost ideal metals, characterized by weak electronic correlations and a relatively low density of states, the replacement of Ta (or Nb) with Zr expands the crystal lattice and shifts ZrOsSi towards an insulator. Our ab initio calculations indicate that ZrOsSi is a Z2 topological metal with clear surface Dirac cones and properties similar to a doped strong topological insulator.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献