Biplanar quadrature coil for versatile low-field extremity MRI

Author:

Yushchenko Maksym,Choquet Philippe,Salameh Najat,Sarracanie Mathieu

Abstract

Biplanar magnets offer extended flexibility in MRI, particularly appealing due to unmatched accessibility to the patient. At low field strength (<0.2 T), such geometries could be particularly suitable for interventional settings or purpose-built applications such as musculoskeletal imaging. In the proposed work, we present a dual-channel, biplanar coil array for low-field MRI featuring almost fully open access when sited in a biplanar magnet. The proposed detector relies on the assembly of two orthogonal biplanar coils (single transmit channel, two receive channels in quadrature) respectively interfaced with custom inductive couplers. Simulations of the B1 field in each element were performed before the quadrature coil was built and used at 0.1 T (4.33 MHz). Once assembled, the best performance in our setup was achieved in undermatched conditions in place of conventional 50-Ω matching. Phantom images display the extended coverage of the quadrature coil, with similar SNR from each individual biplanar coil. The combined images show an expected SNR gain of 2 that confirms good decoupling between the two channels (−36 dB). To the best of our knowledge, the proposed coil represents the first implementation of a biplanar geometry at low field and the first quadrature detection for a biplanar design. The open design and overall good sensitivity of our biplanar design enabled fast and quasi-isotropic 3D imaging with (1.6 × 1.6 × 2.2) mm3 resolution in vivo in human extremities.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3