Filterless frequency 32-tupling millimeter-wave generation based on two cascaded dual-parallel Mach–Zehnder modulators

Author:

Chen Xinqiao,Dai Siyuan,Li Zhihan,Liu Xiaorui,Chen Xu,Xiao Huaibao

Abstract

This study proposed a novel scheme for filterless frequency 32-tupling millimeter wave (MMW) generation based on two cascaded dual-parallel Mach–Zehnder modulators (DPMZMs). When the MZMs are biased on a maximum transmission point and the phase difference of the radio frequency (RF) driving voltage between the two MZMs in DPMZM is π/2, the DPMZM can be used as a quadrupler, which can generate ±4n-order optical sidebands. When the phase difference of the RF driving voltage between the two DPMZMs is π/4, the two cascaded DPMZMs can be used as an octupler, which can generate ±8n-order optical sidebands. After the ±8th-order optical sidebands are suppressed by adjusting the modulation index of MZMs, the center carrier is suppressed by a polarization multiplexing structure, and the ±8n (n > 2) sidebands are ignored because their amplitudes are very small. The main optical components remaining in the output of the two cascaded DPMZMs are ±16th-order optical sidebands, which are beaten in the photodetector to obtain frequency 32-tupling MMW. The theoretical and experimental optical sideband suppression ratios (OSSRs) and radio frequency spurious suppression ratios (RFSSRs) are 53.7 dB and 53.53 dB and 47.7 dB and 47.33 dB, respectively. The experimental and theoretical analysis is consistent, which verifies the feasibility of the scheme. The influence on the OSSR and RFSSR of the generated signals by the extinction ratio and DC bias drift of the MZMs, the initial phases and the amplitudes of the RF drive signal, and the azimuth of the polarization controller (PC) are investigated.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3