Assessing delivered pulse-energies by a nonlinear model

Author:

Rabinovitch Avinoam,Braunstein Doron,Aviram Ira,Smolik Ella,Biton Yaacov,Rabinovitch Revital,Thieberger Reuven

Abstract

Short-duration and high-amplitude electric pulses have recently been used for two different biological tasks: stimulating physiological actions such as heart rate or defibrillation and invoking cell annihilation, as in cancer treatment or atrial fibrillation ablation, by electroporation. However, the physics behind the influence of such pulses has been controversial due to the linear methods used in the analyses. We present the results of a simple nonlinear model to study this situation. Results for the specific nonlinear model show that, below a certain pulse duration, stimulating threshold levels increase rapidly, while the delivered energies reach the lowest plateau. This renders former energy estimates based on linear models, which show a distinct minimum in the calculated delivered energy at a certain amplitude which is invalid for the real nonlinear case. It is notable that these results explain why short high-amplitude pulses are more beneficial to the patient than lower and longer ones in pacing. However, these pulses should not be too high, since no additional energy reduction is achieved and electroporation processes could occur. To further reduce the tissue burden, a train of pulses is necessary, but delivered energies become higher. Considering this case, we clarify the difficulty of reaching threshold at the end of the nth pulse for n > 2 not previously reached and find the “best” conditions for such a train of pulses.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference34 articles.

1. Safety and efficacy of a totally subcutaneous implantable-cardioverter defibrillator;Weiss;Circulation,2013

2. Damage-free peripheral nerve stimulation by 12-ns pulsed electric field;Casiola;Sci Rep,2017

3. Ultrashort Electric Pulse Effects in Biology and Medicine

4. Handbook of electroporation;Damijan,2022

5. Electric fields in biological cell and membranes;Joshi,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3