Fundus photograph-based cataract evaluation network using deep learning

Author:

Gao Weihao,Shao Lei,Li Fang,Dong Li,Zhang Chuan,Deng Zhuo,Qin Peiwu,Wei Wenbin,Ma Lan

Abstract

Background: Our study aims to develop an artificial intelligence-based high-precision cataract classification and grading evaluation network using fundus images.Methods: We utilized 1,340 color fundus photographs from 875 participants (aged 50–91 years at image capture) from the Beijing Eye Study 2011. Four experienced and trained ophthalmologists performed the classification of these cases based on slit-lamp and retro-illuminated images. Cataracts were classified into three types based on the location of the lens opacity: cortical cataract, nuclear cataract, and posterior subcapsular cataract. We developed a Dual-Stream Cataract Evaluation Network (DCEN) that uses color photographs of cataract fundus to achieve simultaneous cataract type classification and severity grading. The accuracy of severity grading was enhanced by incorporating the results of type classification.Results: The DCEN method achieved an accuracy of 0.9762, a sensitivity of 0.9820, an F1 score of 0.9401, and a kappa coefficient of 0.8618 in the cataract classification task. By incorporating type features, the grading of cataract severity can be improved with an accuracy of 0.9703, a sensitivity of 0.9344, an F1 score of 0.9555, and a kappa coefficient of 0.9111. We utilized Grad-CAM visualization technology to analyze and summarize the fundus image features of different types of cataracts, and we verified our conclusions by examining the information entropy of the retinal vascular region.Conclusion: The proposed DCEN provides a reliable ability to comprehensively evaluate the condition of cataracts from fundus images. Applying deep learning to clinical cataract assessment has the advantages of simplicity, speed, and efficiency.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3