Building surrogate models of nuclear density functional theory with Gaussian processes and autoencoders

Author:

Verriere Marc,Schunck Nicolas,Kim Irene,Marević Petar,Quinlan Kevin,Ngo Michelle N.,Regnier David,Lasseri Raphael David

Abstract

From the lightest Hydrogen isotopes up to the recently synthesized Oganesson (Z = 118), it is estimated that as many as about 8,000 atomic nuclei could exist in nature. Most of these nuclei are too short-lived to be occurring on Earth, but they play an essential role in astrophysical events such as supernova explosions or neutron star mergers that are presumed to be at the origin of most heavy elements in the Universe. Understanding the structure, reactions, and decays of nuclei across the entire chart of nuclides is an enormous challenge because of the experimental difficulties in measuring properties of interest in such fleeting objects and the theoretical and computational issues of simulating strongly-interacting quantum many-body systems. Nuclear density functional theory (DFT) is a fully microscopic theoretical framework which has the potential of providing such a quantitatively accurate description of nuclear properties for every nucleus in the chart of nuclides. Thanks to high-performance computing facilities, it has already been successfully applied to predict nuclear masses, global patterns of radioactive decay like β or γ decay, and several aspects of the nuclear fission process such as, e.g., spontaneous fission half-lives. Yet, predictive simulations of nuclear spectroscopy—the low-lying excited states and transitions between them—or of nuclear fission, or the quantification of theoretical uncertainties and their propagation to basic or applied nuclear science applications, would require several orders of magnitude more calculations than currently possible. However, most of this computational effort would be spent into generating a suitable basis of DFT wavefunctions. Such a task could potentially be considerably accelerated by borrowing tools from the field of machine learning and artificial intelligence. In this paper, we review different approaches to applying supervised and unsupervised learning techniques to nuclear DFT.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference120 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3