Advancing hybrid quantum–classical computation with real-time execution

Author:

Lubinski Thomas,Granade Cassandra,Anderson Amos,Geller Alan,Roetteler Martin,Petrenko Andrei,Heim Bettina

Abstract

The use of mid-circuit measurement and qubit reset within quantum programs has been introduced recently and several applications demonstrated that perform conditional branching based on these measurements. In this work, we go a step further and describe a next-generation implementation of classical computation embedded within quantum programs that enables the real-time calculation and adjustment of program variables based on the mid-circuit state of measured qubits. A full-featured Quantum Intermediate Representation (QIR) model is used to describe the quantum circuit including its embedded classical computation. This integrated approach eliminates the need to evaluate and store a potentially prohibitive volume of classical data within the quantum program in order to explore multiple solution paths. It enables a new type of quantum algorithm that requires fewer round-trips between an external classical driver program and the execution of the quantum program, significantly reducing computational latency, as much of the classical computation can be performed during the coherence time of quantum program execution. We review practical challenges to implementing this approach along with developments underway to address these challenges. An implementation of this novel and powerful quantum programming pattern, a random walk phase estimation algorithm, is demonstrated on a physical quantum computer with an analysis of its benefits and feasibility as compared to existing quantum computing methods.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational capabilities and compiler development for neutral atom quantum processors—connecting tool developers and hardware experts;Quantum Science and Technology;2024-04-03

2. Enabling continuous deployment techniques for quantum services;Software: Practice and Experience;2024-03-06

3. Challenges for Quantum Software Engineering: An Industrial Application Scenario Perspective;Quantum Software;2024

4. Enhancing Elderly Health Monitoring Framework With Quantum-Assisted Machine Learning Models as Micro Services;Quantum Innovations at the Nexus of Biomedical Intelligence;2023-12-29

5. Energy Efficiency of Quantum Statevector Simulation at Scale;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3