Polarization characteristics and structural modifications of Cu nanoparticles under high electric fields

Author:

Wang Ye,Kyritsakis Andreas,Zadin Veronika

Abstract

High electric fields affect the diffusion dynamics of atoms on a metal surface, causing biased surface diffusion that possibly leads to the growth of intensively field emitting protrusions and consequent vacuum breakdown (VBD). The scientific understanding of this process, as well as other fundamental VBD initiation mechanisms, is far from complete. Here we investigate the exact atomic behaviour of metal surfaces exposed to extremely high electric fields using density functional theory (DFT). Previous theories describe the field-surface dynamics in terms of the effective dipole moments and polarizability of surface atoms, disregarding higher-order (hyperpolarizability) terms. The validity of this approximation has been evaluated only for electric fields up to 3 GV/m, due to computational limitations of the plane-wave DFT basis used in previous works. In this work, we test the validity of this approximation for a much wider field range, relevant for VBD and field emission (FE), using Cu nanoparticles as our test structures. We find that although such high fields can change the entire structure of Cu nanoparticles, their energetics are described very precisely by the permanent dipole moment and polarizability terms. Thus, we show that neglecting the hyperpolarizability terms is valid even for field values that exceeds the range that is relevant for intense FE and VBD. This work lays a solid foundation for further developing atomic-level simulation models for electric field-induced surface diffusion on metal surfaces and its effects on protrusion growth and VBD initiation.

Publisher

Frontiers Media SA

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3