Acoustic noise levels and field distribution in 7 T MRI scanners

Author:

Shtrepi Louena,Poggetto Vinicius F. Dal,Durochat Clement,Dubois Marc,Bendahan David,Nistri Fabio,Miniaci Marco,Pugno Nicola Maria,Bosia Federico

Abstract

Acoustic noise production during Magnetic Resonance Imaging is an important source of patient discomfort and leads to verbal communication problems, difficulties in sedation, and hearing impairment. To address these issues, in this paper we present a systematic characterization of the acoustic field distribution in a MRI cavity in a last generation 7 T scanner, in different spatial locations, with and without a phantom head. Analysis and comparison of various MRI sequences like Echo-planar imaging”, “Gradient echo”, “Spin echo” are carried out. Sound pressure levels are measured using standard statistical descriptors (Leq,Lmean, L90, and Lmode) using two prepolarized free-field microphones measuring pressure levels generated inside scanner cavities in a 50 Hz to 10 kHz range. Acoustic eigenmodes of the cavity are derived numerically in finite element simulations and compared to measurements. Equivalent sound pressure levels exceed 85 dB in the range between 500 and 3,000 Hz, and peak levels are consistently above 100 dB, i.e., the noise levels of 7 T scanners are higher than 3T and 1.5 T counterparts. The presence of the phantom head in the MRI scanner leads to increased noise levels (by 5–10 dB) in its vicinity, as a result of reflections occurring between the head and the bore reflective walls. Numerical finite element simulations allow to extrapolate the noise distribution in the entire cavity and to interpret experimental results and indicate that the frequencies at which the highest noise levels occur correspond to azimuthal or radial resonant modes of the MRI cavity, i.e., with a radially and azimuthally varying pressure field. These results can be useful for the design of future acoustic noise mitigation solutions.

Funder

Horizon 2020 Framework Programme

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3