First operation of the JUNGFRAU detector in 16-memory cell mode at European XFEL

Author:

Sikorski Marcin,Ramilli Marco,de Wijn Raphael,Hinger Viktoria,Mozzanica Aldo,Schmitt Bernd,Han Huijong,Bean Richard,Bielecki Johan,Bortel Gábor,Dietze Thomas,Faigel Gyula,Kharitonov Konstantin,Kim Chan,Koliyadu Jayanath C. P.,Koua Faisal H. M.,Letrun Romain,Lopez Luis M.,Reimers Nadja,Round Adam,Sarma Abhisakh,Sato Tokushi,Tegze Miklós,Turcato Monica

Abstract

The JUNGFRAU detector is a well-established hybrid pixel detector developed at the Paul Scherrer Institut (PSI) designed for free-electron laser (FEL) applications. JUNGFRAU features a charge-integrating dynamic gain switching architecture, with three different gain stages and 75 μm pixel pitch. It is widely used at the European X-ray Free-Electron Laser (EuXFEL), a facility which produces high brilliance X-ray pulses at MHz repetition rate in the form of bursts repeating at 10 Hz. In nominal configuration, the detector utilizes only a single memory cell and supports data acquisition up to 2 kHz. This constrains the operation of the detector to a 10 Hz frame rate when combined with the pulsed train structure of the EuXFEL. When configured in so-called burst mode, the JUNGFRAU detector can acquire a series of images into sixteen memory cells at a maximum rate of around 150 kHz. This acquisition scheme is better suited for the time structure of the X-rays as well as the pump laser pulses at the EuXFEL. To ensure confidence in the use of the burst mode at EuXFEL, a wide range of measurements have been performed to characterize the detector, especially to validate the detector alibration procedures. In particular, by analyzing the detector response to varying photon intensity (so called ‘intensity scan’), special attention was given to the characterization of the transitions between gain stages. The detector was operated in both dynamic gain switching and fixed gain modes. Results of these measurements indicate difficulties in the characterization of the detector dynamic gain switching response while operated in burst mode, while no major issues have been found with fixed gain operation. Based on this outcome, fixed gain operation mode with all the memory cells was used during two experiments at EuXFEL, namely in serial femtosecond protein crystallography and Kossel lines measurements. The positive outcome of these two experiments validates the good results previously obtained, and opens the possibility for a wider usage of the detector in burst operation mode, although compromises are needed on the dynamic range.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3