A heterogeneous integrated self-powered IoT system of an LiNbO3 device and CMOS readout circuit

Author:

Wang Xiuyu,Kang Min,Zhao Yang,Su Yue,Zhang Xu,Mao Xurui

Abstract

A self-powered IoT system with high integration, robust performance, and adaptability to complex environments is one of the current research hotspots. Piezoelectric materials have been widely used in pressure sensing and energy harvesting due to their stable output electrical properties. In this paper, a heterogeneous integrated self-powered IoT system based on a lithium niobate (LiNbO3) piezoelectric device and CMOS readout circuit is proposed. The piezoelectric sensor is fabricated by depositing electrodes on the surface of the 36°Y-cut LiNbO3 piezoelectric material. The sensitivity of the fabricated sensor is 17.5 mV/kPa. Based on the CSMC 0.18 μm BCD process, a ring voltage-controlled oscillator (VCO) based on the current starvation delay element is designed as a wireless data transmission unit. The oscillator has two tuning terminals, which can realize frequency alignment and voltage threshold judgment. Using photolithography, wire bonding technology, etc., the heterogeneous integration of the Si-based chip and LiNbO3 piezoelectric device is realized. The experimental results show that below 1.8 V supply voltage, the oscillation frequency of the chip increases with the increase in the control terminal voltage, which provides an idea for solving the energy supply problem of an IoT system. This system has great application potential in the field of self-powered sensing.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference31 articles.

1. Wireless sensor network for structural health monitoring: A contemporary review of technologies, challenges, and future direction;Abdulkarem;Struct Health Monit,2020

2. Wearable flexible phototherapy device for knee osteoarthritis;Liu;Electronics,2021

3. A novel solar energy predictor for communicating sensors;Bouguera;IET Commun,2018

4. Review of solar energy harvesting for iot applications;Luo,2018

5. Wearable human foot mechanical energy harvesting device based on moving-coil generator;Ding,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3