Dimensionality reduction and machine learning based model of software cost estimation

Author:

Zhang Wei,Cheng Haixin,Zhan Siyu,Luo Ming,Wang Feng,Huang Zhan

Abstract

Software Cost Estimation (SCE) is one of the research priorities and challenges in the construction of cyber-physical-social systems (CPSSs). In CPSS, it is urge to process environmental and social information accurately and use it to guide social practice. Thus, in response to the problems of low prediction accuracy, poor robustness, and poor interpretability in SCE, this paper proposes a SCE model based on Autoencoder and Random Forest. First, preprocess the project data, remove outliers, and build regression trees to fill in missing attributes in the data. Second, construct a Autoencoder to reduce the dimensionality of factors that affect software cost. Subsequently, the performance of the model was trained and validated using the XGBoost framework on three datasets: COCOMO81, Albrecht, and Desharnais, and compared with common cost prediction models. The experimental results show that the MMRE, MdMRE, and PRED (0.25) values of the proposed model on the COCOMO81 dataset reached 0.21, 0.16, and 0.71, respectively. Compared with other models, the proposed model achieved significant improvements in accuracy and robustness.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3