Author:
Yu Rong,Hu Haoyu,Nica Emilian M.,Zhu Jian-Xin,Si Qimiao
Abstract
Electron correlations play a central role in iron-based superconductors. In these systems, multiple Fe 3d-orbitals are active in the low-energy physics, and they are not all degenerate. For these reasons, the role of orbital-selective correlations has been an active topic in the study of the iron-based systems. In this article, we survey the recent developments on the subject. For the normal state, we emphasize the orbital-selective Mott physics that has been extensively studied, especially in the iron chalcogenides, in the case of electron filling n∼6. In addition, the interplay between orbital selectivity and electronic nematicity is addressed. For the superconducting state, we summarize the initial ideas for orbital-selective pairing and discuss the recent explosive activities along this direction. We close with some perspectives on several emerging topics. These include the evolution of the orbital-selective correlations, magnetic and nematic orders, and superconductivity as the electron filling factor is reduced from 6 to 5, as well as the interplay between electron correlations and topological band structure in iron-based superconductors.
Funder
National Natural Science Foundation of China
Ministry of Science and Technology of the People’s Republic of China
Welch Foundation
National Nuclear Security Administration
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献