Thermodynamics of the pseudogap in cuprates

Author:

Tallon Jeffery L.,Storey James G.

Abstract

The key thermodynamic characteristics of the pseudogap state in cuprate superconductors are reviewed. These include YBa2Cu3O7−δ, Y0.8Ca0.2Ba2Cu3O7−δ, YBa2Cu4O8, Bi2Sr2CaCu2O8+δ, La2−xSrxCuO4, and Tl2Ba2CuO4. The electronic specific heat was extracted using a differential technique, and the evolution of the specific-heat coefficient γ and electronic entropy S as a function of temperature, doping, and magnetic field reveals a canonical behavior summarized by the following. The normal-state gap which opens in the pseudogap domain apparently remains open to the highest temperatures investigated. The gap decreases in magnitude with increasing doping and closes abruptly at a critical doping of p ≈ 0.19 holes/Cu, independent of temperature. In this picture, the pseudogap is separated from the pseudogap-free region of the phase diagram by a vertical line similar to the vertical line separating the incoherent and coherent antinodal quasiparticle states found in ARPES. The important role of fluctuations is evident by a diverging enhancement of γ(T) on either side of Tc, and this enables extraction of the mean-field transition temperature Tcmf>Tc, defining a crescent of parapairing above Tc(p) which extends across the entire superconducting phase diagram and which is quite distinct from pseudogap phenomenology. The data are consistent with d-wave pairing and the BCS ratios are extracted, revealing canonical near-weak-coupling behavior across the over-doped region with a sudden suppression occurring at p ≈ 0.19 when the pseudogap sets in.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3