Importance of exponentially falling variability in heat generation on chemically reactive von kármán nanofluid flows subjected to a radial magnetic field and controlled locally by zero mass flux and convective heating conditions: A differential quadrature analysis

Author:

Wakif Abderrahim,Abderrahmane Aissa,Guedri Kamel,Bouallegue Belgacem,Kaewthongrach Rungnapa,Kaewmesri Pramet,Jirawattanapanit Anuwat

Abstract

Owing to the various physical aspects of nanofluids as thermally enhanced working fluids and the significance of swirling flows in rheological devices as well as in the spin coating and lubrication applications, the current comprehensive examination aimed to explore the important features of spinning flows of chemically reactive Newtonian nanofluids over a uniformly revolving disk in the existence of a radially applied magnetic field along with an exponentially decaying space-dependent heat source, in the case where the disk surface is heated convectively and unaffected by the vertical nanoparticles’ mass flux. Based on feasible boundary layer approximations and Buongiorno’s nanofluid formulation, the leading coupled differential equations are stated properly in the sense of Arrhenius’s and Von Kármán’s approaches. By employing an advanced generalized differential quadrature algorithm, the obtained boundary layer equations are handled numerically with a higher order of accuracy to generate adequate graphical and tabular illustrations for the different values of the influencing flow parameters. As findings, the graphical results confirm that the nanofluid motion decelerates meaningfully thanks to the resistive magnetic influence. A significant thermal amelioration can be achieved by strengthening the magnetic impact, the generation of heat, the thermal convective process, and the thermophoresis mechanism. Moreover, it is found that the thermo-migration of nanoparticles can be reinforced more via the intensification in the convective process, the thermo-migration of nanoparticles, and the activation energy.

Funder

National Research Council of Thailand

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3