Abstract
Bak, Tang, and Wiesenfeld (BTW) proposed the theory of self-organized criticality (SOC), and sandpile models, to connect “1/f” noise, observed in systems in a diverse natural setting, to the fractal spatial structure. We review some of the existing works on the problem of characterizing time-dependent properties of sandpiles and try to explore if the BTW's original ambition has really been fulfilled. We discuss the exact hydrodynamic structure in a class of conserved stochastic sandpiles, undergoing a non-equilibrium absorbing phase transition. We illustrate how the hydrodynamic framework can be used to capture long-ranged spatio-temporal correlations in terms of large-scale transport and relaxation properties of the systems. We particularly emphasize certain interesting aspects of sandpiles—the transport instabilities, which emerge through the threshold-activated nature of the dynamics in the systems. We also point out some open issues at the end.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献