Game-theory based truck platoon avoidance modes selection near the highway off-ramp in mixed traffic environment

Author:

Li Yi,Wang Lan,Xuan Zhaoze,Shen Wenzhe

Abstract

Introduction: The rise of autonomous vehicles has brought about a transformative shift in transportation, witnessing the coexistence of human-driven and autonomous vehicles on highways in the United States, Europe, and China. This coexistence poses challenges to traffic operations, particularly in intricate scenarios like highway ramps. The interaction between autonomous truck platoons, displaying heightened maneuverability, and human-driven vehicles has emerged as a critical concern. Consequently, this research aims to propose and investigate three avoidance modes (overall, gap and cross) employed by truck platoons, evaluating their comprehensive impact on human-driven vehicles.Methods: Multiple scenarios are simulated utilizing the Simulation of Urban Mobility (SUMO) software, collecting data on three distinctive avoidance modes concerning Travel Time (TT) and Time to Collision (TTC). Employing principles of game theory, a comprehensive assessment is undertaken to evaluate the traffic efficiency and safety of each mode. Comparative analyses against a no-avoidance baseline are conducted, offering a holistic evaluation of each mode’s applicability across diverse scenarios.Results: The findings highlight the commendable performance of gap mode and overall mode in enhancing traffic efficiency, while cross mode excels in fortifying traffic safety. Overall, the gap mode emerges as the optimal choice among the three.Discussion: This study introduces a game-theoretic approach to managing human-machine mixed traffic flow, establishing a foundational framework for theoretical research in decision-making for emerging mixed traffic environments. It considers safety and efficiency perspectives across different types of traffic entities. The insights gained contribute to the evolving discourse on the integration of autonomous vehicles into existing traffic systems, addressing the intricate challenges posed by the coexistence of various vehicle types on highways.

Publisher

Frontiers Media SA

Reference32 articles.

1. A review of truck platooning projects for energy savings;Tsugawa;IEEE Trans Intell Vehicles,2016

2. Heavy-duty vehicle platooning for sustainable freight transportation: a cooperative method to enhance safety and efficiency;Alam;IEEE Control Syst Mag,2015

3. Cost-based analysis of autonomous mobility services;Bösch;Transport Policy,2018

4. Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles;Wadud;Transportation Res A: Pol Pract,2016

5. Effects of connected highly automated vehicles on the propagation of congested patterns on freeways;Motamedidehkordi,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3