Comprehensive deep learning-based framework for automatic organs-at-risk segmentation in head-and-neck and pelvis for MR-guided radiation therapy planning

Author:

Czipczer Vanda,Kolozsvári Bernadett,Deák-Karancsi Borbála,Capala Marta E.,Pearson Rachel A.,Borzási Emőke,Együd Zsófia,Gaál Szilvia,Kelemen Gyöngyi,Kószó Renáta,Paczona Viktor,Végváry Zoltán,Karancsi Zsófia,Kékesi Ádám,Czunyi Edina,Irmai Blanka H.,Keresnyei Nóra G.,Nagypál Petra,Czabány Renáta,Gyalai Bence,Tass Bulcsú P.,Cziria Balázs,Cozzini Cristina,Estkowsky Lloyd,Ferenczi Lehel,Frontó András,Maxwell Ross,Megyeri István,Mian Michael,Tan Tao,Wyatt Jonathan,Wiesinger Florian,Hideghéty Katalin,McCallum Hazel,Petit Steven F.,Ruskó László

Abstract

Introduction: The excellent soft-tissue contrast of magnetic resonance imaging (MRI) is appealing for delineation of organs-at-risk (OARs) as it is required for radiation therapy planning (RTP). In the last decade there has been an increasing interest in using deep-learning (DL) techniques to shorten the labor-intensive manual work and increase reproducibility. This paper focuses on the automatic segmentation of 27 head-and-neck and 10 male pelvis OARs with deep-learning methods based on T2-weighted MR images.Method: The proposed method uses 2D U-Nets for localization and 3D U-Net for segmentation of the various structures. The models were trained using public and private datasets and evaluated on private datasets only.Results and discussion: Evaluation with ground-truth contours demonstrated that the proposed method can accurately segment the majority of OARs and indicated similar or superior performance to state-of-the-art models. Furthermore, the auto-contours were visually rated by clinicians using Likert score and on average, 81% of them was found clinically acceptable.

Funder

EIT Health

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3