Acoustic Radiation Force and Torque Acting on Asymmetric Objects in Acoustic Bessel Beam of Zeroth Order Within Rayleigh Scattering Limit

Author:

Sepehrirahnama Shahrokh,Oberst Sebastian

Abstract

Acoustic momentum exchange between objects and the surrounding fluid can be quantified in terms of acoustic radiation force and torque, and depends on several factors including the objects’ geometries. For a one-dimensional plane wave type, the induced torque on the objects with arbitrary shape becomes a function of both, direct polarization and Willis coupling, as a result of shape asymmetry, and has only in-plane components. Here, we investigate, in the Rayleigh scattering limit, the momentum transfer to objects in the non-planar pressure field of an acoustic Bessel beam with axisymmetric wave front. This type of beam is selected since it can be practically realized by an array of transducers that are cylindrically arranged and tilted at the cone angle β which is a proportionality index of the momentum distribution in the transverse and axial propagation directions. The analytical expressions of the radiation force and torque are derived for both symmetric and asymmetric objects. We show the dependence of radiation force and torque on the characteristic parameters β and radial distance from the beam axis. By comparing against the case of a plane travelling plane wave, zero β angle, we demonstrated that the non-planar wavefront of a zeroth order Bessel beam causes an additional radial force and axial torque. We also show that, due to Willis coupling, an asymmetric object experiences greater torques in the θ direction, by minimum of one order of magnitude compared to a plane travelling wave. Further, the components of the partial torques owing to direct polarization and Willis coupling act in the same direction, except for a certain range of cone angle β. Our findings show that a non-planar wavefront, which is quantified by β in the case of a zeroth-order Bessel beam, can be used to control the magnitude and direction of the acoustic radiation force and torque acting on arbitrarily shaped objects, implying that the wavefront should be adjusted according to the object’s shape to impart acoustic momentum in all directions and achieve a desired acoustophoretic response.

Funder

Australian Research Council

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3