A new statistical thermodynamic mechanism for quantum mechanics

Author:

Alpert Martin

Abstract

A new quantum mechanics mechanism theory based on statistical mechanics is introduced. This theory is based on corresponding changes in the number of states with associated energy changes at the observer and observed occurring at observer 1) reset and 2) observation. It is shown that a) the change in the number of states has different consequences than determining the “value” obtained at observation, where each state is a possible interaction between the system and the environment. The number of bits, as a measure of information content, is determined in discrete cell size increments. Two experiments are proposed to validate the introduced mechanism. The first experiment is to determine the spatial and temporal characteristics of energy changes and how they are related to the observer and observed during the entire measurement process. The second experiment is designed to determine timing between changes in the number of states in the system at observer reset. It is anticipated that these experiments will demonstrate no time delay, an entangled process, and, hence, explain delayed choice observations. Moreover, they would demonstrate that bits not stored in the system are transferred to the environment at observer reset, so when the number of inputs is greater than the number of outputs, an energy change occurs and interference is observed (wave characteristics). Conversely, if the number of inputs equals the number of outputs, no energy change occurs and no interference is observed (particle characteristics). It is envisioned that upon validating this mechanism theory, it will further the understanding of the measurement process and entanglement’s involvement in that process.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference59 articles.

1. Feynman lectures on computation;Feynman,1969

2. Discussion of probability relations between separated systems;Schrodinger;Math Proc Camb Phil Soc,1935

3. Die gegenwärtige Situation in der Quantenmechanik (The present situation in quantum mechanics);Schrödinger;Naturwissenschaften,1935

4. Quantum Physics and Observed Reality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3