Sensorless Wavefront Correction in Two-Photon Microscopy Across Different Turbidity Scales

Author:

Sohmen Maximilian,May Molly A.,Barré Nicolas,Ritsch-Marte Monika,Jesacher Alexander

Abstract

Adaptive optics (AO) is a powerful tool to increase the imaging depth of multiphoton scanning microscopes. For highly scattering tissues, sensorless wavefront correction techniques exhibit robust performance and present a straight-forward implementation of AO. However, for many applications such as live-tissue imaging, the speed of aberration correction remains a critical bottleneck. Dynamic Adaptive Scattering compensation Holography (DASH)—a fast-converging sensorless AO technique introduced recently for scatter compensation in nonlinear scanning microscopy—addresses this issue. DASH has been targeted at highly turbid media, but to-date it has remained an open question how it performs for mild turbidity, where limitations imposed by phase-only wavefront shaping are expected to impede its convergence. In this work, we study the performance of DASH across different turbidity regimes, in simulation as well as experiments. We further provide a direct comparison between DASH and a novel, modified version of the Continuous Sequential Algorithm (CSA) which we call Amplified CSA (a-CSA).

Funder

Austrian Science Fund

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3