Author:
Bauwens Ian,Van der Sande Guy,Bienstman Peter,Verschaffelt Guy
Abstract
Artificial neural networks are very time consuming and energy intensive to train, especially when increasing the size of the neural network in an attempt to improve the performance. In this paper, we propose to preprocess the input data of a deep neural network using a reservoir, which has originally been introduced in the framework of reservoir computing. The key idea of this paper is to use such a reservoir to transform the input data into a state in a higher dimensional state-space, which allows the deep neural network to process the data with improved performance. We focus on photonic reservoirs because of their fast computation times and low-energy consumption. Based on numerical simulations of delay-based reservoirs using a semiconductor laser, we show that using such preprocessed data results in an improved performance of deep neural networks. Furthermore, we show that we do not need to carefully fine-tune the parameters of the preprocessing reservoir.
Funder
Fonds Wetenschappelijk Onderzoek
Fonds De La Recherche Scientifique - FNRS
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献