Cascaded information enhancement and cross-modal attention feature fusion for multispectral pedestrian detection

Author:

Yang Yang,Xu Kaixiong,Wang Kaizheng

Abstract

Multispectral pedestrian detection is a technology designed to detect and locate pedestrians in Color and Thermal images, which has been widely used in automatic driving, video surveillance, etc. So far most available multispectral pedestrian detection algorithms only achieved limited success in pedestrian detection because of the lacking take into account the confusion of pedestrian information and background noise in Color and Thermal images. Here we propose a multispectral pedestrian detection algorithm, which mainly consists of a cascaded information enhancement module and a cross-modal attention feature fusion module. On the one hand, the cascaded information enhancement module adopts the channel and spatial attention mechanism to perform attention weighting on the features fused by the cascaded feature fusion block. Moreover, it multiplies the single-modal features with the attention weight element by element to enhance the pedestrian features in the single-modal and thus suppress the interference from the background. On the other hand, the cross-modal attention feature fusion module mines the features of both Color and Thermal modalities to complement each other, then the global features are constructed by adding the cross-modal complemented features element by element, which are attentionally weighted to achieve the effective fusion of the two modal features. Finally, the fused features are input into the detection head to detect and locate pedestrians. Extensive experiments have been performed on two improved versions of annotations (sanitized annotations and paired annotations) of the public dataset KAIST. The experimental results show that our method demonstrates a lower pedestrian miss rate and more accurate pedestrian detection boxes compared to the comparison method. Additionally, the ablation experiment also proved the effectiveness of each module designed in this paper.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3