Multi-arrays of 3D cylindrical microdetectors for beam characterization and microdosimetry in proton therapy

Author:

Bachiller-Perea Diana,Zhang Mingming,Fleta Celeste,Quirion David,Bassignana Daniela,Gómez Faustino,Guardiola Consuelo

Abstract

The present work shows the performance of two new large microdosimetry multi-array systems having two different configurations, namely, pixel and strip configurations. They cover radiation sensitive areas of 1.9 cm × 0.1 cm and 5.1 cm × 0.1 cm, respectively. The microdosimetry systems are based on arrays of 3D cylindrical silicon microdetectors. The 3D electrodes are etched inside the silicon and have a 25 μm diameter and a 20 μm depth. Each of these unit cells is completely isolated from the others and has a well defined 3D micrometric radiation sensitive volume. The pixel-type device consists of 25 × 5 independent silicon-based detectors (500 in total), each one connected to a readout channel, collecting information in 2D in the transverse planes to the particle beam direction. The distance between the individual detectors (pitch) is 200 μm in the horizontal axis and 250 μm in the vertical one. In the case of the strip-type system, we have 512 “columns” (or strips) of 10 detectors per column. Each strip is connected to a readout channel, giving us information in one dimension, but with better statistics than a single pixel. In this system, both the horizontal and vertical pitches are 100 μm.Both systems have been tested under proton beam irradiations at different energies between 6 and 24 MeV to obtain the corresponding microdosimetry quantities along the Bragg peak and distal edge. The measurements were performed at the Accélérateur Linéaire et Tandem à Orsay (ALTO, France). The microdosimetry quantities were successfully obtained with spatial resolutions of 100–250 μm. Experimental results were compared to Monte Carlo simulations and an overall good agreement was found. Both microdetector systems showed a good microdosimetry performance under clinical-equivalent fluence rates along distances of several centimeters. This work demonstrates that the two new systems having different configurations can be clinically used as microdosimeters for measuring the lineal energy distributions in the context of proton therapy treatments. Additionally, they could be also used for beam monitoring.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3