Superconductor Meissner Effects for Gravito-Electromagnetic Fields in Harmonic Coordinates Due to Non-Relativistic Gravitational Sources

Author:

Inan Nader A.

Abstract

There is much discrepancy in the literature concerning the possibility of a superconductor expelling gravito-electromagnetic fields just as it expels electromagnetic fields in the Meissner effect. Contradicting results are found in at least 18 papers written collectively by more than 20 authors and published over the course of more than 55 years (from 1966 to the present year of 2022). The primary purpose of this paper is to carefully explain the reason for the discrepancies, and provide a single conclusive treatment which may bring coherence to the subject. The analysis begins with a covariant Lagrangian for spinless charged particles (Cooper pairs) in the presence of electromagnetic fields in curved space-time. It is known that such a Lagrangian can lead to a vanishing Hamiltonian. Alternatively, it is shown that using a “space + time” Lagrangian leads to an associated Hamiltonian with a canonical momentum and minimal coupling rule. Discrepancies between Hamiltonians obtained by various authors are resolved. The canonical momentum leads to a modified form of the London equations and London gauge that includes the effects of gravity. A key result is that the gravito-magnetic field is expelled from a superconductor with a penetration depth on the order of the London penetration depth only when an appropriate magnetic field is also present. The gravitational flux quantum (fluxoid) in the body of a superconductor, and the quantized supercurrent in a superconducting ring, are also derived. Lastly, the case of a superconducting ring in the presence of a charged rotating mass cylinder is used as an example of applying the formalism developed.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference115 articles.

1. Gravity Research Foundation GeorgeR 1949

2. New directions for research in the theory of gravitation;DeWitt,2011

3. Superconductors and gravitational drag;DeWitt;Phys Rev Lett,1966

4. General Relativity

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3