Multi Gigabit Wireless Data Transfer in Detectors at Future Colliders

Author:

Brenner R.,Dehos C.,Locci E.

Abstract

The WADAPT (Wireless Allowing Data And Power Transmission) consortium has been formed to identify the specific needs of different projects that might benefit from wireless communication technologies with the objective of providing a common platform for research and development in order to optimize effectiveness and cost. Wireless technologies have developed extremely fast over the last decade and are now mature enough to be a promising alternative to cables and optical links, with a possibility of revolutionizing detector design. Although wireless readout has the qualities and properties to be used in many collider detectors, this article focuses on the transmission of large amount of data from vertex detectors at high rate, low power budget and in potential high radiation environment. For vertex detectors, the 60 GHz band has proven to be adequate and commercial products are already available, providing 6 Gbps data links. This technology allows efficient partitioning of detectors in topological regions of interest, with the possibility of adding intelligence on the detector to perform four-dimensional reconstruction of the tracks and vertices online, in order to attach the tracks to their vertex with great efficiency even in difficult experimental conditions, and conveniently substitutes a mass of materials (cables and connectors). Early transceiver module products have been successfully tested for signal confinement, crosstalk, electromagnetic immunity and resistance to radiation. In the long run, emerging 140 GHz bands could also be used for higher data rates (>100 Gbps) at future high energy and luminosity hadron colliders.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference31 articles.

1. Wireless Allowing Data and Power Transfer;Dehos,2020

2. The ATLAS experiment at the CERN Large Hadron Collider;J Instrum,2008

3. The CMS experiment at the CERN Large Hadron Collider;J Instrum,2008

4. High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report;Béjar Alonso,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid pixel readout integrated circuits;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3