Epidemic dynamics edge caching strategy for 6G networks

Author:

Wang Xinyi,Zhang Yuexia,Zhang Siyu

Abstract

By caching popular content on edge servers closer to users to respond to users’ content requests in 6G networks, the transmission load of backhaul links can be reduced. However, the time-varying characteristics of content prevalence leads to the issue that the cache content may not match the user’s needs, resulting in a decrease in cache success ratio. To solve these issues, we proposed a cache distribution strategy based on epidemic dynamics (CDSED) for 6G edge network. First, a 6G edge caching content model (6G ECCM) is constructed to establish the process of cache content propagation among users as an infectious disease propagation process, analyze the distribution of users’ interest in cache content and obtain the cache content state probability prediction equation, and use the cache content state probability prediction equation to predict the cache content prevalence. Second, based on the predicted prevalence results, a prevalence predictive genetic-annealing cache content algorithm (PGAC) is proposed with the optimization objective of maximizing the cache success ratio. The algorithm designs the selection function of the traditional genetic algorithm as a simulated annealing selection function based on the cache content success ratio, which avoids the defect of the genetic algorithm that converges to the locally optimum cache strategy too early and enhances the cache success ratio. Finally, the optimum cache content decision is solved by iterative alternation. Simulation results demonstrate that CDSED strategy can enhance cache success ratio than the LRU strategy, the LFU strategy, and the MPC strategy.

Publisher

Frontiers Media SA

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3