Generation and analysis of the chaos phenomenon in the molecular-distillation-Navier–Stokes (MDNS) nonlinear system

Author:

Qin Wei,Li Hui,Jiang Zhiyu,Luo Mingyue,Cong Shuofeng

Abstract

Introduction: For the Navier-Stokes equation, one of the most essential tasks should be to study its completeness of the complex nonlinear systems. Also, its nature and physical practical applications would be depth explored. Moreover, as one of the routes to chaos, this equation with an external force has been investigated numerically in 1989. Recently, some information is worth noting that when the high symmetry was imposed on the velocity field, the complex nonlinear motions should occur even lead to the chaos phenomenon. However, most of the published papers are based on theoretical studies and rarely deal with the above results, which lost of the match between them and the integrity of the scientific system.Methods: This study analyzed the molecular distillation process in detail based on the basic theory of nonlinear chaotic systems. Then, the mathematical model for the process of molecular distillation with one brushless DC motor (BLDCM) is built and named the Molecular-Distillation-Navier-Stokes (MDNS) equation. Also, its complex and potentially chaotic behaviors and chaotic processes are first discovered and demonstrated, such as chaotic attractors, chaotic co-attractors, phase portraits, time-domain waveforms, Lyapunov exponent spectrums, Poincare maps, the bifurcation diagrams, and so on.Results: The good agreement among theoretical analysis, simulation and experimental results verifies the practicability and flexibility of the configured model.Discussion: The related conclusions have supplemented and improved the theoretical system for the Navier Stokes equations. Also, it reflects the significance in molecular distillation processes. Meanwhile, the novel research direction for the fields of the chaotic nonlinear and complex industrial systems have been explored and discovered.

Funder

Department of Science and Technology of Jilin Province

Jilin Province Development and Reform Commission

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3