Processes at lithium-hydride/deuteride surfaces upon low energy impact of H/D

Author:

Krstic P.S.,Ostrowski E.T.,Dwivedi S.,Maan A.,Abe S.,van Duin A. C.,Koel B.E.

Abstract

Sputtering, reflection, and retention processes at amorphous and crystalline lithium hydride surfaces due to impact of low energy (1–100 eV) hydrogen and deuterium atoms over the range of 0o −85o angle of incidence at 300 K surface temperature were investigated by atomistic computational methods. Classical molecular dynamics simulations were performed with improved reactive bond-order force field (ReaxFF) potentials that include long-range polarization effects. In addition to probabilities of surface processes, the energy and angular spectra of ejected particles were obtained. Comparison of these results with those previously obtained on pristine lithium surfaces indicates the importance of saturation of the Li surface and near-surface region with hydrogen. We show that such saturation, which is typical in both laboratory and fusion device experiments with lithium coating of the plasma-facing surfaces, significantly changes the surface processes with hydrogen irradiation in the understudied low-energy region of impact energies.

Funder

Office of Science

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3