Author:
Chang Chang,Xie Xiaoping,Li Tiantian,Cui Jishi
Abstract
The design of vertical and lateral PIN Ge-on-Si photodetectors was motivated by the disparity in electron and hole mobilities. In the case of vertical PIN junction detectors, configuring the slab region as n-type doping leads to a notable increase in the bandwidth of approximately 20 GHz compared to utilizing p-type doping for the slab. For lateral PIN junction detectors, we determined that setting the length of the n-type slab region to be 2.8 times that of the p-type slab region, based on the carrier saturation drift rate ratio, does not compromise the bandwidth. This configuration enhances the bandwidth while minimizing light absorption loss from the electrode. The proposed design in this study enhances the performance of Ge-on-Si photodetectors without adding complexity to the fabrication process. The principles applied in this study serve as instructive references for the conceptualization of other photonic or electronic devices, reinforcing the widespread applicability of these design strategies.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
National Key Research and Development Program of China
Natural Science Basic Research Program of Shaanxi Province
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献