Author:
Castro-Villarreal Pavel,Ramírez J. E.
Abstract
The conformational states of a semiflexible polymer enclosed in a volume V:=ℓ3 are studied as stochastic realizations of paths using the stochastic curvature approach developed in [Rev. E 100, 012503 (2019)], in the regime whenever 3ℓ/ℓp>1, where ℓp is the persistence length. The cases of a semiflexible polymer enclosed in a cube and sphere are considered. In these cases, we explore the Spakowitz–Wang–type polymer shape transition, where the critical persistence length distinguishes between an oscillating and a monotonic phase at the level of the mean-square end-to-end distance. This shape transition provides evidence of a universal signature of the behavior of a semiflexible polymer confined in a compact domain.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献