The inviscid incompressible limit of Kelvin–Helmholtz instability for plasmas

Author:

Briard A.,Ripoll J.-F.,Michael A.,Gréa B.-J.,Peyrichon G.,Cosmides M.,El-Rabii H.,Faganello M.,Merkin V. G.,Sorathia K. A.,Ukhorskiy A. Y.,Lyon J. G.,Retino A.,Bouffetier V.,Ceurvorst L.,Sio H.,Hurricane O. A.,Smalyuk V. A.,Casner A.

Abstract

Introduction: The Kelvin–Helmholtz Instability (KHI) is an interface instability that develops between two fluids or plasmas flowing with a common shear layer. KHI occurs in astrophysical jets, solar atmosphere, solar flows, cometary tails, planetary magnetospheres. Two applications of interest, encompassing both space and fusion applications, drive this study: KHI formation at the outer flanks of the Earth’s magnetosphere and KHI growth from non-uniform laser heating in magnetized direct-drive implosion experiments. Here, we study 2D KHI with or without a magnetic field parallel to the flow. We use both the GAMERA code, which solves the compressible Euler equations, and the STRATOSPEC code, which solves the Navier-Stokes equations under the Boussinesq approximation, coupled with the magnetic field dynamics. GAMERA is a global three-dimensional MHD code with high-order reconstruction in arbitrary nonorthogonal curvilinear coordinates, which is developed for a large range of astrophysical applications. STRATOSPEC is a three-dimensional pseudo-spectral code with an accuracy of infinite order (no numerical diffusion). Magnetized KHI is a canonical case for benchmarking hydrocode simulations with extended MHD options.Methods: An objective is to assess whether or not, and under which conditions, the incompressibility hypothesis allows to describe a dynamic compressible system. For comparing both codes, we reach the inviscid incompressible regime, by decreasing the Mach number in GAMERA, and viscosity and diffusion in STRATOSPEC. Here, we specifically investigate both single-mode and multi-mode initial perturbations, either with or without magnetic field parallel to the flow. The method relies on comparisons of the density fields, 1D profiles of physical quantities averaged along the flow direction, and scale-by-scale spectral densities. We also address the triggering, formation and damping of filamentary structures under varying Mach number or Atwood number, with or without a parallel magnetic field.Results: Comparisons show very satisfactory results between the two codes. The vortices dynamics is well reproduced, along with the breaking or damping of small-scale structures. We end with the extraction of growth rates of magnetized KHI from the compressible regime to the incompressible limit in the linear regime assessing the effects of compressibility under increasing magnetic field.Discussion: The observed differences between the two codes are explained either from diffusion or non-Boussinesq effects.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of Kelvin-Helmholtz generated vortices in magnetised fluids;Frontiers in Astronomy and Space Sciences;2024-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3