A critical evaluation on nuclear safety properties of novel cadmium oxide-rich glass containers for transportation and waste management: Benchmarking with a reinforced concrete container

Author:

ALMisned Ghada,Baykal Duygu Sen,Kilic G.,Ilik E.,Zakaly Hesham M.H.,Ene Antoaneta,Tekin H. O.

Abstract

We examine the nuclear safety properties of a newly designed cadmium oxide-rich glass container for nuclear material to a bitumen-reinforced concrete container. Individual transmission factors, detector modelling, and energy deposition (MeV/g) in the air are calculated using MCNPX (version 2.7.0) general purpose Monte Carlo code. Two container configurations are designed with the material properties of cadmium dioxide-rich glass and Concrete + Bitument in consideration. First, individual transmission factors for 60Co and 137Cs radioisotopes are calculated. To evaluate potential environmental consequences, energy deposition amounts in the air for 60Co and 137Cs are also determined. The minimum gamma-ray transmission rates for two container types are reported for a cadmium dioxide-rich glass container. In addition, the quantity of energy deposition is varied depending on the container type, with a lower value for cadmium dioxide-rich glass container. The 40% cadmium dioxide-doped glass container provides more effective safety than the Cement + Bitumen container, according to the overall findings. In conclusion, the utilization of cadmium dioxide-doped glass material along with its high transparency and advanced material properties may be a significant and effective option in areas where concrete is required to assure the safety of nuclear materials.

Funder

Ministry of Education—Kingdom of Saudi Arabi

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference26 articles.

1. Radioactive waste management of nuclear power plant;Ratin;Int J Renew Energ Res.,2014

2. Heavy metal oxide added glassy portable containers for nuclear waste management applications: In comparison with reinforced concrete containers;Tekin;Radiat Phys Chem Oxf Engl 1993,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3