Abstract
Let G be a connected graph with vertex set V(G). The resistance distance between any two vertices u, v ∈ V(G) is the net effective resistance between them in the electric network constructed from G by replacing each edge with a unit resistor. Let S ⊂ V(G) be a set of vertices such that all the vertices in S have the same neighborhood in G − S, and let G[S] be the subgraph induced by S. In this note, by the {1}-inverse of the Laplacian matrix of G, formula for resistance distances between vertices in S is obtained. It turns out that resistance distances between vertices in S could be given in terms of elements in the inverse matrix of an auxiliary matrix of the Laplacian matrix of G[S], which derives the reduction principle obtained in [J. Phys. A: Math. Theor. 41 (2008) 445203] by algebraic method.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献