Detection of Fake News on COVID-19 on Web Search Engines

Author:

Mazzeo Valeria,Rapisarda Andrea,Giuffrida Giovanni

Abstract

In early January 2020, after China reported the first cases of the new coronavirus (SARS-CoV-2) in the city of Wuhan, unreliable and not fully accurate information has started spreading faster than the virus itself. Alongside this pandemic, people have experienced a parallel infodemic, i.e., an overabundance of information, some of which is misleading or even harmful, which has widely spread around the globe. Although social media are increasingly being used as the information source, web search engines, such as Google or Yahoo!, still represent a powerful and trustworthy resource for finding information on the Web. This is due to their capability to capture the largest amount of information, helping users quickly identify the most relevant, useful, although not always the most reliable, results for their search queries. This study aims to detect potential misleading and fake contents by capturing and analysing textual information, which flow through search engines. By using a real-world dataset associated with recent COVID-19 pandemic, we first apply re-sampling techniques for class imbalance, and then we use existing machine learning algorithms for classification of not reliable news. By extracting lexical and host-based features of associated uniform resource locators (URLs) for news articles, we show that the proposed methods, so common in phishing and malicious URL detection, can improve the efficiency and performance of classifiers. Based on these findings, we suggest that the use of both textual and URL features can improve the effectiveness of fake news detection methods.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3