Spatial information coding with artificially engineered structures for acoustic and elastic wave sensing

Author:

Jiang Tianxi,He Qingbo

Abstract

Acoustic and elastic waves carry a wealth of useful physical information in real world. Sensing acoustic and elastic waves is very important for discovering knowledge in various fields. Conventional wave sensing approaches generally require multiple expensive sensors and complex hardware systems due to the uniform spatial transmission characteristics of physical fields. These limitations prompt the development of wave sensing strategies with high integration degree, lightweight structure, and low hardware cost. Due to their extraordinary physical properties, artificially engineered structures such as metastructures can encode the physical field information by flexibly manipulating the transmission characteristics of acoustic and elastic waves. The fusion of information coding and wave sensing process breaks through the limitations of conventional sensing approaches and reduces the sensing cost. This review aims to introduce the advances in spatial information coding with artificially engineered structures for acoustic and elastic wave sensing. First, we review the enhanced spatial wave sensing with metastructures for weak signal detection and source localization. Second, we introduce computational sensing approaches that combines the spatial transmission coding structures with reconstruction algorithms. Representative progress of computational sensing with metastructures and random scattering media in audio source separation, ultrasonic imaging, and vibration information identification is reviewed. Finally, the open problems, challenges, and research prospects of the spatial information coding structures for acoustic and elastic wave sensing are discussed.

Funder

National Natural Science Foundation of China

Program of Shanghai Academic Research Leader

National Program for Support of Top-Notch Young Professionals

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3