Reputation-based electricity scheduling scheme for complex network of user electricity consumption

Author:

Tang Wenjun,Lin Xiaoming,Zhao Yuming,Zhou Mi,Wang Zhenshang,Xiao Yong,Wang Ji

Abstract

With the emergence of various high-powered electrical equipment, the demand for electric energy has increased rapidly. Subsequently, it has highlighted some issues of electricity consumption, such as the adjustment of electricity consumption peak. Although many electricity scheduling schemes have been proposed to adjust and control user load of electricity consumption, the current regulation of user load is not accurate and effective because the load regulation of different regional grid users is a complex network system. In this paper, we propose a reputation-based user electricity scheduling scheme for the complex network of user electricity consumption, whose purpose is to accurately adjust the electricity consumption of related users to further improve the adjustment of electricity consumption peak. In our scheme, we first model a complex network of user electricity consumption. Then we construct a reputation calculation method for electricity users, where the calculated reputation of users is one of the basis for assigning scheduling tasks to users and calculating the price subsidy received by users who complete the scheduling tasks. Further, we use the machine learning method to train a computation model to calculate the adjustment coefficients of electricity load, and then the electricity scheduling tasks are adjusted based on the calculated adjustment coefficients. Finally, the corresponding electricity scheduling tasks are assigned to the selected electricity users respectively for adjusting the electricity consumption of these users. Experiment results show the effectiveness of our proposed scheme. Our scheme can effectively calculate the reputation values of users based on their historical data, and the corresponding electricity scheduling tasks are effectively assigned to related users to accurately adjust the electricity consumption of these users according to their reputation values and the real-time adjustment coefficients, so as to efficiently improve the adjustment of electricity consumption peak.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference23 articles.

1. Incentive demand response model and evaluation considering the uncertainty of resident user participation [J];Zheng;Automation Electric Power Syst,2022

2. Considering dynamic incentive model two phase micro power grid operation optimization of demand response [J];Zhenbo;Power Syst Prot Control,2021

3. Transient stability assessment of smart power system using complex networks framework;Nasiruzzaman,2011

4. Recognition and vulnerability analysis of key nodes in power grid based on complex network centrality;Liu;IEEE Trans Circuits Syst Express Briefs,2018

5. Power system cascading risk assessment based on complex network theory;Wang;Physica A: Stat Mech its Appl,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3