MERP: Motifs enhanced network embedding based on edge reweighting preprocessing

Author:

Lv Shaoqing,Xiang Ju,Li Yiyang,Ren Xincheng,Lu Guangyue

Abstract

Network embedding has attracted a lot of attention in different fields recently. It represents nodes in a network into a low-dimensional and dense space while preserving the structural properties of the network. Some methods (e.g. motif2Vec, RUM, and MODEL) have been proposed to preserve the higher-order structures, i.e., motifs in embedding space, and they have obtained better results in some downstream network analysis tasks. However, there still exists a significant challenge because original motifs may include redundant noise edges, and embedding entire motifs into embedding space may adversely affect the performance in downstream tasks. To overcome this problem, we propose a motifs enhancement framework for network embedding, based on edge reweighting. Through edge reweighting, the weight of redundant noise edges between motifs is decreased. Therefore, the effect of redundant noise edges will be reduced in the embedding space. We apply the edge reweighting as a preprocessing phase in network embedding, and construct the motifs enhanced network by incorporating enhanced motifs structures with the original network. By doing this, the embedding vectors from the motifs enhanced network can achieve better performance in downstream network analysis tasks. Extensive experiments are performed on two network analysis tasks (community detection and node classification) with synthetic and real-world datasets. The results show that our framework outperforms state-of-the-art network embedding methods.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference54 articles.

1. Network representation learning: A systematic literature review;Li;Neural Comput Appl,2020

2. A survey on network embedding;Cui;IEEE Trans Knowl Data Eng,2018

3. Deepwalk: Online learning of social representations;Bryan,2014

4. Predictive network representation learning for link prediction;Wang,2017

5. Community enhancement network embedding based on edge reweighting preprocessing;Lv;J Stat Mech,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3