Application of reinforcement learning in the LHC tune feedback
-
Published:2022-09-07
Issue:
Volume:10
Page:
-
ISSN:2296-424X
-
Container-title:Frontiers in Physics
-
language:
-
Short-container-title:Front. Phys.
Author:
Grech Leander,Valentino Gianluca,Alves Diogo,Hirlaender Simon
Abstract
The Beam-Based Feedback System (BBFS) was primarily responsible for correcting the beam energy, orbit and tune in the CERN Large Hadron Collider (LHC). A major code renovation of the BBFS was planned and carried out during the LHC Long Shutdown 2 (LS2). This work consists of an explorative study to solve a beam-based control problem, the tune feedback (QFB), utilising state-of-the-art Reinforcement Learning (RL). A simulation environment was created to mimic the operation of the QFB. A series of RL agents were trained, and the best-performing agents were then subjected to a set of well-designed tests. The original feedback controller used in the QFB was reimplemented to compare the performance of the classical approach to the performance of selected RL agents in the test scenarios. Results from the simulated environment show that the RL agent performance can exceed the controller-based paradigm.
Publisher
Frontiers Media SA
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Reference24 articles.
1. SteinhagenRJ
Aachen, GermanyRWTH Aachen ULHC beam stability and feedback control-orbit and energy2007
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献