Interpretable machine learning for predicting pathologic complete response in patients treated with chemoradiation therapy for rectal adenocarcinoma

Author:

Wang Du,Lee Sang Ho,Geng Huaizhi,Zhong Haoyu,Plastaras John,Wojcieszynski Andrzej,Caruana Richard,Xiao Ying

Abstract

PurposePathologic complete response (pCR) is a critical factor in determining whether patients with rectal cancer (RC) should have surgery after neoadjuvant chemoradiotherapy (nCRT). Currently, a pathologist's histological analysis of surgical specimens is necessary for a reliable assessment of pCR. Machine learning (ML) algorithms have the potential to be a non-invasive way for identifying appropriate candidates for non-operative therapy. However, these ML models' interpretability remains challenging. We propose using explainable boosting machine (EBM) to predict the pCR of RC patients following nCRT.MethodsA total of 296 features were extracted, including clinical parameters (CPs), dose-volume histogram (DVH) parameters from gross tumor volume (GTV) and organs-at-risk, and radiomics (R) and dosiomics (D) features from GTV. R and D features were subcategorized into shape (S), first-order (L1), second-order (L2), and higher-order (L3) local texture features. Multi-view analysis was employed to determine the best set of input feature categories. Boruta was used to select all-relevant features for each input dataset. ML models were trained on 180 cases from our institution, with 37 cases from RTOG 0822 clinical trial serving as the independent dataset for model validation. The performance of EBM in predicting pCR on the test dataset was evaluated using ROC AUC and compared with that of three state-of-the-art black-box models: extreme gradient boosting (XGB), random forest (RF) and support vector machine (SVM). The predictions of all black-box models were interpreted using Shapley additive explanations.ResultsThe best input feature categories were CP+DVH+S+R_L1+R_L2 for all models, from which Boruta-selected features enabled the EBM, XGB, RF, and SVM models to attain the AUCs of 0.820, 0.828, 0.828, and 0.774, respectively. Although EBM did not achieve the best performance, it provided the best capability for identifying critical turning points in response scores at distinct feature values, revealing that the bladder with maximum dose >50 Gy, and the tumor with maximum2DDiameterColumn >80 mm, elongation <0.55, leastAxisLength >50 mm and lower variance of CT intensities were associated with unfavorable outcomes.ConclusionsEBM has the potential to enhance the physician's ability to evaluate an ML-based prediction of pCR and has implications for selecting patients for a “watchful waiting” strategy to RC therapy.

Funder

National Cancer Institute

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3