Artificial Interactionism: Avoiding Isolating Perception From Cognition in AI

Author:

Guillermin Mathieu,Georgeon Olivier

Abstract

We discuss the influence upon the fields of robotics and AI of the manner one conceives the relationships between artificial agents' perception, cognition, and action. We shed some light upon a widespread paradigm we call theisolated perception paradigmthat addresses perception as isolated from cognition and action. By mobilizing the resources of philosophy (phenomenology and epistemology) and cognitive sciences, and by drawing on recent approaches in AI, we explore what it could mean for robotics and AI to take distance from the isolated perception paradigm. We argue that such a renouncement opens interesting ways to explore the possibilities for designing artificial agents with intrinsic motivations and constitutive autonomy. We then propose Artificial Interactionism, our approach that escapes the isolated perception paradigm by drawing on the inversion of the interaction cycle. When the interaction cycle is inverted, input data are not percepts directly received from the environment, but outcomes of control loops. Perception is not received from sensors in isolation from cognition but is actively constructed by the cognitive architecture through interaction. We give an example implementation of artificial interactionism that demonstrates basic intrinsically motivated learning behavior in a dynamic simulated environment.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference78 articles.

1. Motor schema-based mobile robot navigation;Arkin;Int. J. Robot. Res.,1989

2. Relativism about science;Baghramian,2014

3. Revisiting active perception;Bajcsy;Auton. Robots,2018

4. Made-up minds: a constructivist approach to artificial intelligence - a book review;Bettoni;AI Commun.,1993

5. Thomas Kuhn

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Affordance-Based Intersubjectivity Mechanism to Infer the Behaviour of Other Agents;2023 IEEE International Conference on Development and Learning (ICDL);2023-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3